Loading...
Титан и его сплавы активно применяются для изготовления металлических имплантатов, устанавливающихся в костную ткань. Этот материал обладает высокой прочностью, коррозионной стойкостью и биосовместимостью. Однако в процессе использования титановые конструкции испытывают циклические нагрузки, например при ходьбе, которые постепенно разрушают его поверхность. Это явление можно предотвратить, если покрыть титан защитным материалом с повышенной устойчивостью к всевозможным агрессивным факторам.
Ученые из Саратовского государственного технического университета имени Ю. А. Гагарина (Саратов) нанесли на титановые образцы покрытие, состоящее из тантала и его оксида. Для этого они распылили вещество в магнитных полях, направленных перпендикулярно друг другу. Процесс проводили с помощью низкотемпературной плазмы, температура которой меньше 100 000 К, в вакуумной камере. Так удалось получить три типа покрытия: только с оксидом, только с танталом и слоистую структуру тантала с оксидом.
Пленка оксида тантала толщиной 50*10-9 м, что в 100–150 раз меньше размера клеток костной ткани, не изменила строение поверхности исходного образца титана. Чистый тантал при распылении оседал на микровыступах, а при нанесении слоями (тантал и оксидный подслой) собирался в агломераты — скопления из отдельных зерен. С ростом толщины танталовой пленки мелкие агломераты собирались в более крупные, и на поверхности образовывались пластинчатые структуры. Кроме того, на образцах были видны поры и микронеровности. Такой состав покрытий обусловил неоднородную твердость: авторы выделили сверхтвердые включения и окружающую их более мягкую и пластичную матрицу. Ученые оценивали твердость этих составляющих по отдельности, используя тестер механических свойств — наноиндентор.
Так, образцы, покрытые оксидом тантала, были тверже титана без покрытия примерно в 20 раз. Чистый тантал, напротив, практически не изменил свойства титановых образцов. Однако самым эффективным оказалось композитное покрытие, то есть нанесенное слоями. У таких образцов твердость матрицы была почти втрое выше, а твердость включений — в 25–30 раз выше, чем у титана. Предложенная слоистая структура потенциально может использоваться при изготовлении протезов и хирургических инструментов.
«Формирование танталсодержащих покрытий со сверхтвердыми включениями на титановых изделиях для восстановительной медицины позволит повысить их качество и эффективность применения в особо сложных условиях. Данный метод — один из вариантов вакуумного распыления и осаждения покрытий, которые разработала наша научная группа. В ближайших планах стоит комплексная задача по расширению номенклатуры распыляемых материалов, в частности ниобия, молибдена и других. Помимо медицинских изделий в качестве основы выступят сменные многогранные пластины для механической обработки и керамические подложки для мощных электронных компонентов СВЧ-микроэлектроники», — рассказывает руководитель проекта, поддержанного грантом РНФ, Александр Фомин, доктор технических наук, заведующий кафедрой «Материаловедение и биомедицинская инженерия» Саратовского государственного технического университета имени Ю. А. Гагарина.
Автор: Анна Дегтярь.
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.