Loading...
Сверхпроводники привлекают большое внимание благодаря уникальной способности передавать электричество без потерь. Один из фундаментальных параметров сверхпроводника — сверхпроводящая щель. Это энергетическая величина, связанная с особенностями сверхпроводящего состояния.
Большую часть сверхпроводников можно описать с использованием теории БКШ, названной по первым буквам фамилий ее создателей: Бардина, Купера и Шриффера. Эта теория хорошо описывает сверхпроводники с одной щелью и небольшим изменением теплоемкости при фазовом переходе, а также со слабым электрон-фононным взаимодействием. К ним относятся металлы и интерметаллические соединения, которые очень активно исследовались в сороковые, пятидесятые и шестидесятые годы прошлого столетия.
«Сейчас мы пытаемся выяснить, почему существуют сверхпроводники, которые не описываются теорией БКШ, — рассказал руководитель исследования, заведующий кафедрой неорганической химии химического факультета МГУ, член-корреспондент РАН Андрей Шевельков. — Например, двухщелевые сверхпроводники. Их известно очень мало, всего три доказанных и десяток предполагаемых. Поэтому мы не знаем, какими свойствами они обладают, как влияет наличие двух щелей. Единственный способ понять — найти их и тщательно исследовать».
В течение нескольких лет ученые вели споры, может ли интерметаллическое соединение галлия и молибдена, Mo8Ga41, быть двухщелевым сверхпроводником. Данные были противоречивыми, а из-за очень сильного электрон-фононного взаимодействия этот сверхпроводник не попадает в рамки теории БКШ, поэтому описать его параметры и понять поведение трудно.
«В нашей работе удалось показать, что это очень специфический однощелевой сверхпроводник, — объяснил Андрей Шевельков. — В нем сочетаются разные физические свойства: объемная и поверхностная сверхпроводимость. Поэтому при физических измерениях кажется, что в этом сверхпроводнике две щели. На самом деле одна относится к объему вещества, а другая — к его поверхности».
Для выяснения этого вопроса были задействованы четыре основных метода исследования. Например, очень точный рентгенодифракционный анализ с использованием синхротронного излучения, с помощью которого можно оценить качество линий и понять их особенности. Также ученые использовали измерения магнитных, сверхпроводящих свойств и данные двух типов спектроскопии: ядерного магнитного резонанса и ядерного квадрупольного резонанса. Совокупность этих методов и анализ полученных данных позволили дать окончательный ответ на поставленный вопрос.
«Пока неизвестно, какое применение соединения такого типа могут найти в будущем, — пояснил Андрей Шевельков. — Однако при сочетании сверхпроводимости на поверхности и в объеме могут возникнуть интересные свойства. Например, теоретически возможно создать сверхпроводник, который будет частично выталкиваться магнитным полем, то есть объединить в одном веществе магнетизм со сверхпроводимостью».
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.