Loading...
Сотрудники факультета ВМК МГУ формализировали задачи идентификации функциональных паттернов в многомерных временных рядах с использованием методов машинного обучения, что позволяет избежать необходимости специфического исследования в области. Предложенная архитектура учитывает пространственные метаданные, кодируя исходные позиции электродов как граф для передачи в соответствующую модель. Этот метод был успешно применен в нейрофизиологии: модель самостоятельно справилась с теми случаями, где нейрофизиологам уже известен функциональный паттерн P300. Кроме того, этот подход был применен к распознаванию эмоций с использованием набора данных SEED, достигнув высоких результатов.
«Одним из ключевых аспектов метода является использование графа, построенного по внешней метрической информации, что оказало значительное влияние на эффективность алгоритма. В будущем планируется расширить метод на другие области, такие как данные от сенсоров на производственных линиях или банковские транзакции», — отметил доцент кафедры математических методов прогнозирования факультета ВМК МГУ Арчил Майсурадзе.
Исследование охватывает анализ наборов данных, собранных с использованием метода эксперимента «одиночный стимул», широко используемого в психологических и нейрофизиологических исследованиях. Набор данных BCI competition был использован для дополнительной проверки архитектуры, достигнув впечатляющих результатов с различными моделями машинного обучения. Кроме того, набор данных SEED был использован для задач распознавания эмоций, демонстрируя гибкость и эффективность метода.
«В отличие от недавних подходов, игнорирующих физическую структуру интерфейсов BCI, этот метод подчеркивает создание плотного графа, представляющего фактическую форму устройства записи. Исследованы различные методы построения графов и показано, что предложенный нами метод значимо влияет на результаты», — добавил магистрант кафедры математических методов прогнозирования факультета ВМК МГУ Леонид Сидоров.
Предложенная архитектура модели состоит из блоков пространственной и временной обработки, а также блока предсказания, с акцентом на возможности графовых сверточных сетей. Интеграция графовых сверточных сетей позволила достичь улучшения качества работы модели на данных ЭЭГ и конкурентоспособных уровней точности на стандартных наборах данных.
Материал опубликован в рамках совместного проекта с Национальным центром развития искусственного интеллекта. Подробнее о развитии ИИ в России — на сайте ai.gov.ru.
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.