Loading...

Специалисты трех российских институтов (Всероссийского научно-исследовательского института технической физики имени академика Е. И. Забабахина; Томского политехнического университета; Института ядерной физики им. Г. И. Будкера СО РАН) провели компьютерное моделирование топливного цикла ториевого гибридного реактора, в котором в качестве источника дополнительных нейтронов используется высокотемпературная плазма, удерживаемая в длинной магнитной ловушке. Среди преимуществ такого гибридного реактора по сравнению с используемыми сейчас ядерными реакторами можно отметить умеренную мощность, относительно небольшие размеры, высокую безопасность при эксплуатации и малый уровень радиоактивных отходов. Исследования по этой тематике поддержаны грантами РНФ № N 14-50-00080 и РФФИ №19-29-02005. Результаты опубликованы в журнале Plasma and Fusion Research.

Для получения энергии гибридные ядерно-термоядерные реакторы используют одновременно реакции деления тяжелых ядер и синтеза легких, поэтому можно ожидать, что такие установки усилят положительные особенности и нивелируют недостатки, присущие энергетике на основе раздельного использования этих ядерных реакций. Для эффективного использования реакции управляемого термоядерного синтеза в производстве энергии необходимо сначала получить, а затем постоянно поддерживать стабильное состояние плазмы с очень высокой температурой (выше 100 млн. °С) при ее высокой плотности. Создание реактора, работающего по гибридной схеме, представляется более легкой задачей, поскольку в этом случае плазма используется не для получения энергии, а всего лишь в качестве источника дополнительных нейтронов для поддержания необходимой схемы протекания ядерных реакций. Таким образом, требования, предъявляемые к ее характеристикам, становятся менее жесткими.

В условиях, когда в плазме генерируются нейтроны, дополнительно поступающие в ядерный реактор, появляется возможность заменить большую (до 95%) часть используемого в качестве топлива делящегося урана на неделящийся – сырьевой – торий. В отличие от урана торий представлен в природе практически одним изотопным состоянием, и поэтому он легко и с малыми затратами выделяется из природного сырья. При поглощении нейтронов изотоп тория 232Th превращается в изотоп урана 233U, который хорошо делится тепловыми нейтронами. По количеству выделяемой энергии эта реакция сопоставима с реакцией, используемой в ядерных реакторах с топливным циклом, использующем только природные изотопы урана 235U и 238U. Особенность применения ториевого топлива состоит в том, что в такой гибридной энерговыделяющей установке при прекращении поступления дополнительных нейтронов от внешнего источника ядерные реакции деления сразу же затухают. Таким образом, гибридные реакторы на ториевом топливе не способны к «саморазгону», что обеспечивает значительно большую безопасность ториевой энергетики.

В настоящее время уже существуют различные проекты гибридных реакторов, в которых плазменным источником нейтронов служит токамак. Альтернативой может стать использование в качестве источника дополнительных нейтронов длинной магнитной ловушки. Команда исследователей, сформированная по инициативе ученых ИЯФ СО РАН, в которую также вошли специалисты ТПУ и РФЯЦ-ВНИИТФ, представила концепцию относительно компактного реактора такого типа.

О принципах работы длинной магнитной ловушки в качестве источника нейтронов рассказывает главный научный сотрудник ИЯФ СО РАН, доктор физико-математических наук профессор Андрей Аржанников: «На начальном этапе при помощи специальных плазменных пушек создается относительно холодная плазма, количество которой поддерживается дополнительной подпиткой газом из атомов тяжелого водорода – дейтерия. Инжекция в такую плазму нейтральных (атомарных) пучков с энергией частиц масштаба 100 кэВ обеспечивает образование в ней высокоэнергетичных ионов дейтерия и трития (это тяжелые изотопы водорода), а также поддержание необходимой температуры. Сталкиваясь друг с другом, ионы дейтерия и трития соединяются в ядро гелия, при этом происходит выделение высокоэнергетических нейтронов. Такие нейтроны беспрепятственно выходят через стенки вакуумной камеры, где магнитным полем удерживается плазма, и, поступая в область с ядерным топливом, после замедления поддерживают протекание реакции деления тяжелых ядер, которая служит основным источником выделяемой в гибридном реакторе энергии».

По словам Андрея Аржанникова, энергия нейтронов настолько высока, что они пронизывают стенки камеры из нержавеющей стали и медную обмотку, которая обеспечивает необходимое магнитное поле в плазме. Эти нейтроны глубоко проникают в топливную сборку (бланкет) ядерного реактора и попадают на графитовые блоки, где при рассеянии на ядрах углерода происходит их торможение. Замедленные нейтроны хорошо поглощаются ядерным топливом и поддерживают необходимый уровень количества делящихся ядер в единицу времени. Выделившаяся в виде тепла энергия разлетающихся фрагментов ядра, делящегося при поглощении нейтрона, снимается потоками газообразного гелия, который под высоким давлением прокачивается через цилиндрические каналы в топливной сборке. Топливо также размещается в специальных каналах, для этого оно заключено в специальные цилиндрические графитовые стержни. Эти стержни заполняются покрытыми защитным слоем из карбида кремния микрокапсулами, содержащими торий и небольшой процент энергетического или оружейного плутония.

«Торий-232 (232Th) – это воспроизводящий, или, как еще его называют, сырьевой изотоп, который при захвате нейтрона превращается в делящийся изотоп уран-233 (233U), – рассказывает руководитель Отделения естественных наук, заведующий лабораторией ТПУ доктор физико-математических наук профессор Игорь Шаманин. – Ядра плутония в ториевой топливной композиции выполняют функцию запала. Плутоний, оружейный или энергетический, делится тепловыми нейтронами и позволяет поддерживать в размножающей системе цепную реакцию деления. Через некоторое время после "старта" ядра плутония выгорят, а в системе установится режим, в котором скорость наработки ядер урана-233 станет равна скорости выгорания этих ядер. Размножающая система станет самодостаточной».

Топливный цикл проектируемой установки составит 3000 эффективных суток (эффективные сутки – это 24 часа работы при 100% уровне мощности) – по истечении этого срока блоки с выгоревшим топливом заменяются на свежие, и реактор готов к новому топливному циклу. При этом стартовый состав ядерного топлива выбран так, что в течение всего периода работы размножающие характеристики реактора позволят эксплуатировать его на проектном уровне мощности при соблюдении всех требований безопасности.

«На протяжении всего периода работы установки изотопный состав, а вместе с ним и ядерно-физические свойства топлива меняются – "просчитать" эволюцию ядерного топлива с учетом множества реакций, происходящих в нем, помогает компьютерное моделирование, – рассказывает начальник лаборатории РФЯЦ-ВНИИТФ, кандидат физико-математических наук Владимир Шмаков. – На сегодняшний день мы смоделировали эту эволюцию для нашей гибридной установки и рассчитали режимы работы реактора в течение топливного цикла, в дальнейшем нам предстоит также смоделировать различные режимы поступления нейтронов из плазменного источника и выбрать оптимальный вариант для обеспечения работы реактора».

Сейчас ученые также рассматривают возможность создания на реакторной площадке ТПУ экспериментального стенда, который будет состоять из ториевой топливной сборки и нейтронного источника на основе инженерно-технических решений, уже реализованных на открытых ловушках ИЯФ СО РАН.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.