Loading...

Ученые из России и Китая уточнили гравитационную постоянную, используя два независимых метода. Результаты исследования опубликованы в журнале Nature.

Гравитационная постоянная G — одна из фундаментальных констант в физике, которую применяют при расчетах гравитационного взаимодействия материальных тел. Согласно закону всемирного тяготения Ньютона, гравитационное взаимодействие двух материальных точек пропорционально произведению их масс и обратно пропорционально квадрату расстояния между ними. Также в эту формулу входит постоянный коэффициент — гравитационная постоянная G. Массы и расстояния астрономы сейчас могут измерять значительно точнее, чем гравитационную постоянную, из-за чего у всех расчетов тяготения между телами накапливалась систематическая погрешность. Предположительно, связанная с гравитационной постоянной погрешность влияет и на исследования взаимодействий атомов или элементарных частиц.

Физики неоднократно измеряли эту величину. В новой работе международный коллектив ученых, в состав которого вошли сотрудники Государственного астрономического института имени П.К. Штернберга (ГАИШ) МГУ, решил уточнить гравитационную постоянную, используя два метода и крутильный маятник.

«В эксперименте по измерению гравитационной постоянной требуется произвести абсолютные измерения трех физических величин: массы, длины и времени, — комментирует один из авторов исследования, Вадим Милюков из ГАИШ. — Абсолютные измерения всегда могут быть отягощены систематическими ошибками, поэтому было важным получить два независимых результата. Если они совпадают между собой, то появляется уверенность, что они свободны от систематики. Наши результаты совпадают между собой на уровне трех стандартных отклонений».

Первый использованный авторами исследования подход — так называемый динамический метод (time-of-swing method, ToS). Исследователи вычисляли, как изменяется частота крутильных колебаний в зависимости от положения двух пробных тел, которые служили источниками масс. Если расстояние между пробными телами уменьшается, сила их взаимодействия увеличивается, что вытекает из формулы для гравитационного взаимодействия. В результате возрастает частота колебаний маятника.

Используя этот метод, исследователи учли вклад упругих свойств нити подвеса маятника в погрешности измерения и постарались сгладить их. Эксперименты проводились на двух независимых аппаратах, находящихся на расстоянии 150 м друг от друга. На первом ученые протестировали три различных вида волокна нити подвеса, чтобы проверить возможные ошибки, наведенные материалом. У второго значительно изменили конструкцию: исследователи использовали новое силикатное волокно, другой набор маятников и грузов для того, чтобы оценить ошибки, которые зависят от установки.

Второй метод, которым измеряли G, — метод компенсации угловых ускорений (Angular acceleration feedback, AAF). В нем измеряется не частота колебаний, а угловое ускорение маятника, вызванное пробными телами. Этот метод измерения G не нов, однако для того, чтобы увеличить точность вычисления, ученые кардинально изменили конструкцию экспериментальной установки: заменили алюминиевую подставку на стеклянную, чтобы материал не расширялся при нагревании. В качестве пробных масс использовали тщательно отшлифованные сферы из нержавеющей стали, близкие по форме и однородности к идеальным.

Чтобы снизить роль человеческого фактора, практически все параметры ученые измерили повторно. Также они подробно исследовали влияние температуры и вибраций при вращении на расстояние между пробными телами.

Полученные в результате экспериментов значения гравитационной постоянной (AAF — 6,674484(78)×10-11 м3 кг-1 с-2; ToS — 6,674184(78)×10-11 м3 кг-1 с-2) совпадают между собой на уровне трех стандартных отклонений. Кроме того, оба имеют наименьшую неопределенность из всех ранее установленных значений и согласуются со значением, которое рекомендовано Комитетом данных для науки и техники (CODATA) в 2014 году. Эти исследования, во-первых, дали большой вклад в определение гравитационной постоянной, а во-вторых, показали, какие усилия потребуются в будущем для того, чтобы достичь еще большей точности.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.