Loading...

Стремительное развитие технологии литий-ионных аккумуляторов, появившейся в начале 1990-х годов, произошло в связи с ростом популярности портативной электроники: мобильных телефонов, ноутбуков, планшетов и других гаджетов. Сейчас рынок источников энергии продолжает развиваться благодаря повсеместному внедрению электротранспорта, робототехники, систем хранения и распределения электроэнергии. За изобретение литий-ионных аккумуляторов в 2019 году была вручена Нобелевская премия по химии. Но дальнейшее развитие технологии литий-ионных аккумуляторов упирается в серьезную проблему – в возможный «потолок» литиевых ресурсов при нынешнем уровне технологий добычи самого легкого металла, а также в высокую стоимость сырья. Частичный переход на альтернативный носитель заряда в аккумуляторах – натрий – может помочь решению проблемы.

Натрий-ионный аккумулятор имеет энергетические характеристики, близкие к литий-ионному, но основной рабочий катион примерно в сто раз дешевле лития (стоимость тонны карбоната натрия и лития оценивается примерно в $200 и $20 тысяч соответственно), а химические свойства натрия позволяют использовать легкий и дешевый алюминий вместо тяжелой и дорогой меди на анодном токосъемнике. Но не все так идеально – больший радиус иона натрия по сравнению с литиевым приводит к уменьшению плотности энергии электродного материала. С этим связано главное ограничение натрий-ионных аккумуляторов – для достижения энергоемкости, сравнимой с литий-ионными, их размер должен быть на 30–50% больше. Поэтому натрий-ионные аккумуляторы пока не могут найти применение в портативной электронике, но уже перспективны в качестве крупногабаритных батарей, начиная с уровня электромобиля (десятки киловатт-часов энергии) и заканчивая масштабом электростанций (мега- и гигаватт-часы).

Сотрудники кафедры электрохимии МГУ под руководством старшего научного сотрудника кандидата химических наук Олега Дрожжина впервые синтезировали и охарактеризовали электрохимические свойства натрий-ванадиевого пирофосфата β-NaVP2O7.

«Пока поиск нового материала для электрохимических приложений по большей части ведется на базе эмпирических предположений ученых – они отмечают интересные свойства в соединениях сходного состава и структуры и пытаются получить новые, улучшенные материалы. Группа Олега Дрожжина обнаружила интересную структуру, ранее описанную только для крупных щелочных катионов – калия, рубидия, цезия, – и попробовала синтезировать новое соединение с натрием с целью проверить его электрохимические свойства. Они оказались уникальными», – прокомментировал результат работы и. о. декана химического факультета МГУ, член-корреспондент РАН Степан Калмыков.

Энергоемкость исследованного материала достигает 420 Вт-ч/кг, что всего на 20% меньше, чем у литиевого катодного материала LiCoO2 (530 Вт-ч/кг), и значительно выше энергоемкости многих ранее изученных потенциальных натриевых катодных материалов. Другой важной характеристикой электродного материала является крайне малое – всего полпроцента – изменение объема при заряде-разряде. Схожими свойствами обладает литий-титановая шпинель, которая оказалась самым стабильным, мощным и безопасным анодным материалом и потому нашла применение в аккумуляторах электрокаров и электробусов.

«Изменение объема при циклировании напрямую влияет на такой важный показатель, как потеря емкости со временем. Чем меньше меняется объем материала при заряде-разряде, тем дольше он сможет стабильно работать. Множество соединений так и не нашли применение в аккумуляторах из-за значительного изменения в объеме», – комментирует Олег Дрожжин.

Электрохимики получили материал, каркас которого может обратимо отдавать и внедрять до двух катионов натрия на одну элементарную ячейку, от состава VP2O7 до Na2VP2O7. Суммарная емкость такого циклирования – около 220 мАч/г, что стало рекордной величиной для подобных материалов. Кроме того, это означает, что пирофосфат потенциально может стать и анодным материалом натрий-ионных аккумуляторов. В дальнейшем специалисты планируют еще улучшить электрохимические свойства соединения за счет изменения начальной степени окисления ванадия и частичного замещения его на другие катионы.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.