Loading...

Физики из Балтийского федерального университета имени И. Канта (БФУ) разработали и применили методику для идентификации отобранного из морской воды микропластика. Метод спектроскопии позволяет определять химический состав загрязняющих частиц любого размера. Статья об исследовании опубликована в Marine Pollution Bulletin.

Весь пластиковый мусор, который попадает в моря, остается в водах Мирового океана, поскольку пластик не разлагается, а только дробится на мелкие частицы. В таком виде он еще опаснее для морских животных и рыб, так как легко попадает в организм с водой и пищей и накапливается в органах. Кроме того, микропластик неуловим. Невозможно даже измерить, сколько именно миллионов тонн пластика плавает в океане. Собирать его сетями только в поверхностных водах недостаточно, так как микрочастицы постоянно «путешествуют» между слоями. Существующие инструменты для сбора пластика в более глубоких водах, как правило, не позволяют точно оценить глубину, на которой взят образец. Между тем без информации о распределении микропластика в разных слоях воды невозможно понять, как загрязнение распространяется в океане и сколько именно его успело накопиться. И даже когда образцы собраны, перед учеными остается серьезная проблема: как определить химический состав мельчайших частиц полимеров.

Новую методику для определения состава микропластика предложили физики БФУ. Они идентифицировали частицы, собранные в Балтийском море, с помощью нового аппарата PLEX. PLEX (сокращение от PLastic EXplorer) разработан физиками Института водных проблем Севера Карельского научного центра РАН в сотрудничестве с Атлантическим отделением Института океанологии имени П.П. Ширшова РАН. Аппарат оснащен насосом, который может закачать 2-3 м3 морской воды на любой заданной глубине до 100 м. Вода поднимается на корабль, где из нее отфильтровывают все твердые частицы. Подключать шланги к системе фильтрации, промывать их перед сбором следующего образца и менять фильтры нужно вручную, поэтому с PLEX одновременно работают как минимум два человека: один следит за насосом, второй — за фильтром.

С помощью нового инструмента исследователи собрали образцы микропластика с различных глубин Балтийского моря. Дополнительные образцы были собраны вручную на побережье. Образцы тщательно изучили, и финальным этапом анализа стало определение их химического состава. Поскольку такие фрагменты и нити чрезвычайно малы (к примеру, диаметр нитей – 50 микрон и менее), для их анализа необходима очень чувствительная методика. Физики БФУ разработали метод на базе спектроскопии комбинационного рассеяния. Поскольку разные вещества индивидуально неупруго рассеивают свет, разработанный метод помог выяснить, из каких конкретно соединений состоит каждый образец. В образцах из Балтийского моря ученые идентифицировали 33 разных типа загрязняющих микрочастиц: нейлон, целлюлоза, полиэтилен, полипропилен и другие.

«Спектральный анализ микроскопических частиц полимеров – непростая задача. Большую проблему в исследованиях окрашенных полимеров (а таких большинство) составляет флуоресценция красителя в их составе. Поскольку полимер прочно связан с красителем, необходимо так подобрать экспериментальные условия, чтобы, во-первых, минимизировать флуоресценцию красителя, а во-вторых, выделить полезный сигнал полимера в общем спектре. Также в ряде случаев требовались дополнительная очистка микроскопических образцов и многокомпонентный спектральный анализ, с помощью которого сложные спектры, содержащие, например, несколько полимеров и краситель, были разложены на отдельные составляющие, – поясняет один из авторов работы, старший научный сотрудник НОЦ «Фундаментальная и прикладная фотоника. Нанофотоника» БФУ Андрей Зюбин. – В результате была разработана методика точного определения химического состава образцов, которая оказалась полезной для прикладных исследований физики моря».


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.