Loading...

Freepik

Российские ученые выяснили, как повысить эффективность симуляции квантовых вычислений на классических компьютерах в условиях шумов. Для решения этой задачи ученые рассмотрели так называемое квази-вероятностное представление квантовой механики, в котором поведение квантовых объектов может быть описано с использованием «отрицательных вероятностей» (квази-вероятностей). Результаты исследования опубликованы в журнале Physical Review A, сообщает пресс-служба НИТУ МИСИС.

В рамках квази-вероятностного представления возможность появления отрицательных вероятностей является единственным отличием квантовых систем от стохастических классических систем. Чем больше отрицательных элементов в квази-вероятностном описании реализации квантового алгоритма, то есть чем больше его негативность, — тем, в свою очередь, сложнее просимулировать этот алгоритм на классическом компьютере.

Благодаря новой разработанной технике подбора наиболее подходящего «базиса» — так называемого обобщенного фрейма — для построения квази-вероятностного описания конкретной квантовой цепочки авторы продемонстрировали возможность снижения негативности этой цепочки, что упрощает ее классическую симуляцию.

«Исследование включает анализ квантовых цепей, в которых присутствуют шумные однокубитные и двухкубитные квантовые вентили. Квантовые вентили аналогичны логическим вентилям в обычных компьютерах, но могут оперировать квантовыми состояниями, включающими в себя состояния квантовой суперпозиции и запутанные состояния. В реальных современных квантовых процессорах эти вентили подвержены различного рода шумам, что приводит к разрушению обрабатываемой квантовой информации», — рассказал Алексей Федоров, директор Института физики и квантовой инженерии НИТУ МИСИС, руководитель научной группы «Квантовые информационные технологии» РКЦ.

Минимизация общей негативности проводилась для различных комбинаций размерности фреймов и типа вентилей, что позволило выявить оптимальные параметры для различных уровней шума. С помощью алгоритма оптимизации были рассмотрены однокубитные фреймы различных размерностей, соответствующих возможным трехмерным правильным многогранникам (тетраэдру, кубу, октаэдру и так далее). Каждый многогранник рассматривался внутри трехмерного пространства параметров Блоха, а его вершины служили точками для построения однокубитных фреймов. Авторы статьи показали, что переход к многогранникам с большим числом вершин — увеличение размерности фрейма — обеспечивает снижение негативности в соответствующем квази-вероятностном описании цепочки. Полученные результаты сравнивались с альтернативной методикой снижения негативности за счет объединения нескольких вентилей в один (gate merging). Выяснилось, что при наличии шумов увеличение размерности фреймов приводит к более эффективному снижению негативности по сравнению с объединением вентилей.

«Результаты исследования важны для эффективной классической симуляции квантовых устройств текущего поколения, операции в которых подвержены шуму. Мы показали, что, увеличивая размерность фреймов, на которых построены квази-вероятностные представления, можно значительно снизить негативность, тем самым ускорить классическую симуляцию квантовых вычислений. В дальнейшем мы планируем использовать техники квази-вероятностной симуляции для повышения эффективности квантовых вычислений и возможности исполнения больших квантовых цепочек на текущих квантовых компьютерах», — поделился младший научный сотрудник группы «Квантовые информационные технологии» РКЦ Денис Куликов.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.