Loading...
При работе текстильных и фармацевтических предприятий образуются химические отходы, например ароматические углеводороды или полупродукты (вещества, оставшиеся от реакций) лекарственных средств, опасные для окружающей среды. Поэтому их нужно расщеплять до нетоксичных соединений — воды и углекислого газа. Обычно такие реакции проводят с помощью синглетного кислорода — молекулы с более высокой энергией, чем у обычного кислорода, которым мы дышим. Благодаря этой энергии синглетный кислород активнее соединяется с органическими веществами и сильнее окисляет их, из-за чего последние разрушаются. Также с помощью синглетного кислорода можно окислять сульфиды — соединения, в большом количестве получающиеся при обработке нефтепродуктов, — до сульфоксидов, которые входят в состав многих медицинских препаратов для противораковой терапии и лечения заболеваний нервной системы.
Сейчас синглетный кислород получают с помощью ультрафиолетовых ламп и металлических катализаторов, но у них есть два недостатка: они достаточно дороги, а также убивают живые организмы в воде, например фитопланктон, которым питаются рыбы. Поэтому ученые ищут более дешевые и безопасные способы получения синглетного кислорода для разложения опасных органических отходов и для изготовления лекарств.
Ученые из Ивановского государственного химико-технологического университета c коллегами синтезировали шесть фотокатализаторов — соединений, которые генерируют синглетный кислород под действием видимого света (солнечного или LED-ламп). Это происходит за счет того, что катализатор получает энергию света, а затем передает ее на молекулы кислорода, тем самым активируя их.
Исследователи синтезировали фотокатализаторы в два этапа, используя широкодоступный органический реактив фталонитрил, сырьем которого служит одна из фракций нефти, и бромид бора. Из них в инертной атмосфере получали краситель красно-розового цвета. Затем он взаимодействовал с производными ароматических карбоновых кислот и фенола с образованием фотокатализаторов.
Авторы проверили, насколько хорошо фотокатализаторы образуют синглетный кислород из обычного, растворив их в этиловом спирте и на 16 часов поместив под свет LED-лампы. Этиловый спирт выбрали в качестве растворителя потому, что фотокатализаторы не вступают с ним в реакцию, а значит, в таких условиях можно корректно оценить их эффективность. Эксперимент показал, что на свету фотокатализаторы превращали обычный кислород в синглетный с эффективностью от 49% до 62%. Для сравнения, широко используемые катализаторы на основе соединений титана и вольфрама обеспечивают эффективность превращения порядка 30%.
Потенциально полученные фотокатализаторы можно применять на очистных сооружениях фабрик и заводов, потому что именно под влиянием света малой мощности от относительно дешевых LED-ламп они будут превращать обычный кислород в синглетную форму. Она, в свою очередь, будет разрушать полупродукты лекарств и ароматические углеводороды до воды и углекислого газа. Использование видимого света для получения синглетного кислорода значительно удешевит процесс очистки, поскольку LED-лампы дешевле ультрафиолетовых в среднем в 65–70 раз.
Кроме того, эксперименты показали, что полученные учеными фотокатализаторы с эффективностью 96–100% превращают сульфиды в сульфоксиды, входящие в состав лекарств для противораковой терапии и лечения заболеваний нервной системы. Более того, фотокатализаторы могут применяться до 1000 раз без потери эффективности, что сопоставимо с промышленно используемыми для образования сульфоксидов фотокатализаторами.
«Мы планируем протестировать фотокатализаторы с разной химической структурой, а также испытать их в паре с другими веществами, разлагающими загрязнители, например диоксидом титана, нитридом углерода и графеном. Это позволит не только улучшить свойства используемых сейчас фотокатализаторов, но и разработать новые и тем самым усовершенствовать технологии разложения токсичных химических соединений в воде», — рассказывает руководитель проекта, поддержанного грантом РНФ, Иван Скворцов, старший научный сотрудник лаборатории синтеза и исследования порфиразиноидов Ивановского государственного химико-технологического университета.
В исследовании также участвовали ученые из Российского технологического университета МИРЭА (Москва), Института физической химии и электрохимии имени А. Н. Фрумкина РАН (Москва) и Института химии растворов имени Г. А. Крестова РАН (Иваново).
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.