Loading...

rawpixel.com / Freepik

Физики Университета МИСИС и Российского квантового центра (РКЦ) систематизировали современные подходы к реализации квантовых алгоритмов с использованием многомерных квантовых систем (кудитов) и показали, как вовлечение дополнительных уровней квантовых носителей позволяет упростить выполнение сложных квантовых операций и сократить их число по сравнению со стандартными кубитными схемами. Такие подходы могут повысить эффективность квантовых вычислений и приблизить практическое применение квантовых алгоритмов в задачах оптимизации, обработки данных и моделирования сложных систем. Исследование опубликовано в журнале Reviews of Modern Physics, сообщила пресс-служба Университета МИСИС.

В основе квантовых вычислений лежат кубиты. В отличие от бита в классическом компьютере, который может быть «0» или «1», кубит может быть еще и в суперпозиции. Когда кубит измеряется, он «выбирает» одно из состояний (0 или 1) с вероятностью, заданной его суперпозицией, и «коллапсирует» в это состояние. Каждый кубит кодируется в состояние определенной физической системы, например, атома или фотона. Современные квантовые процессоры пока обладают ограниченным числом таких элементов и чувствительны к ошибкам при выполнении сложных задач, поэтому важной целью остаётся повышение точности и сокращение вычислительных операций. Помимо кубитов, есть более сложные, многоуровненвые единицы — кудиты, которые сочетают в себе больше состояний (три, четыре и более) и позволяют обрабатывать больше информации. Если научиться управлять ими, дополнительные уровни можно использовать для упрощения вычислений без увеличения числа физических носителей информации: атомов, ионов, сверхпроводниковых систем и т.д.

Исследователи разработали схемы, в которых дополнительные уровни кудитов подключаются только на время выполнения отдельных шагов алгоритма, а затем система возвращается к стандартному кубитному режиму работы. Это позволяет более эффективно реализовывать любые квантовые алгоритмы.

«Мы показали, как упростить сложные операции, без которых невозможно большинство квантовых алгоритмов. Обычно для их выполнения требуется множество шагов и дополнительных элементов, что повышает риск ошибок. Использование дополнительных состояний уже имеющихся в кудитах позволяет сократить число шагов для выполнения подобных операций», — отметил директор Института физики и квантовой инженерии НИТУ МИСИС, PhD Алексей Фёдоров.

Новый подход не привязан к конкретной технологии и может применяться на различных квантовых платформах — от сверхпроводниковых схем до ионных и фотонных систем. Это делает разработку универсальной и перспективной для дальнейшего развития квантовых вычислений. Результаты работы помогают приблизить практическое применение квантовых алгоритмов и повысить эффективность квантовых устройств следующего поколения.

«Мы сознательно фокусируемся на квантовых алгоритмах, представленных в виде кубитных цепочек, поскольку именно в таком виде сегодня описывается подавляющее большинство квантовых алгоритмов. Это позволяет напрямую связать теоретические идеи с реальными аппаратными платформами и показать, как кудиты могут быть использованы без необходимости полностью переосмысливать существующие алгоритмы», – уточнила к.ф.-м.н. Анастасия Николаева, старший научный сотрудник группы квантовых информационных технологий РКЦ и НИТУ МИСИС.

«Мы проанализировали широкий круг подходов к использованию кудитов в квантовых вычислениях — как разработанных в наших предыдущих исследованиях, так и предложенных другими научными коллективами. Нам было важно не просто собрать эти результаты вместе, но и показать их сильные и слабые стороны, а также сделать общую картину понятной для разработчиков квантового “железа” и коллег-теоретиков, работающих над квантовыми алгоритмами», — подчеркнул к.ф.-м.н. Евгений Киктенко, младший научный руководитель группы квантовых информационных технологий РКЦ.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.