Loading...

Geeta Patil / Flickr

Российские ученые создали необычную углеродную структуру, которую можно использовать как катод в цинк-ионных суперконденсаторах. Полученные на ее основе аккумуляторы обладают большей емкостью и плотностью энергии, чем существующие аналоги. Результаты опубликованы в журнале Carbon.

Суперконденсаторы могут хранить в 100 раз больше энергии, чем обычные батареи. Они быстрее заряжаются и выдерживают больше циклов перезарядки. Один из самых перспективных суперконденсаторов  цинк-ионный. Однако его реальные емкости, которых удается достигнуть экспериментально, значительно меньше рассчитанных теоретически. Это связано с ограничениями характеристик углеродных соединений, которые используются в качестве катодов. В попытках подобрать лучшую углеродную структуру ученые исследуют углеродные нанотрубки, химически активированный графен, слоистый пористый углерод и полые углеродные сферы. Химики из Российского университета дружбы народов предложил новую 3D-структуру, которая улучшает свойства цинк-ионных суперконденсаторов.

«Гибридные суперконденсаторы на основе ионов  перспективная платформа для оптимизации устройств хранения энергии. Однако ограниченные недостаточными качествами углеродных катодов, энергетические возможности цинк-ионных суперконденсаторов уступают ожидаемым, особенно при высокой выходной мощности», — рассказывает Рафаэль Луке, профессор Центра молекулярного дизайна и синтеза инновационных соединений для медицины РУДН.

Чтобы получить новую 3D-структуру, химики смешали в воде меламин, борную кислоту и муку. Смесь на 15 часов поместили в автоклав при температуре 180℃. В результате получились структуры, похожие по строению на гвоздику или гортензию — неровные шары с большим количеством пор. Этот «букет» химики РУДН подвергли пиролизу — в течение 2 часов нагревали, постепенно повышая температуру до 900℃. В ходе пиролиза вспомогательные соединения в «цветах» распались, после чего остался только углеродный каркас. Аналогичные процедуры ученые провели, используя в качестве исходных соединений муку и меламин, а также только муку. Все полученные структуры изучили с помощью сканирующего электронного микроскопа. Затем из полученного «цветочного» углерода (BCF) химики сделали цинк-ионные суперконденсаторы и измерили его характеристики.

Химики сравнили строение полученных соединений и пришли к выводу, что борная кислота не повлияла на формирование «цветочной» структуры  на самом деле основой для нее стали кристаллы меламина и мука. Выяснилось также, что BCF состоит из множества «нанолепестков» — тонких листов, соединенных друг с другом в единую шаровую конструкцию. Эти связанные нанолепестки обеспечили быструю передачу заряда внутри цветка и низкое сопротивление. Емкость аккумулятора на основе BCF оказалась больше, чем у других аналогичных устройств — 133,5 мАч/грамм. Плотность энергии (то есть количество энергии, которое может хранить 1 кг аккумулятора) также превысила существующие цинк-ионные аналоги

«Подходящие поры полученного углерода и структура его нанолепестков обеспечивают проникновение ионов электролита и обмен ими. Наше исследование прокладывает путь к созданию углеродных структур из отдельных углеродных сегментов для устройств хранения энергии», — комментирует Рафаэль Луке, профессор Центра молекулярного дизайна и синтеза инновационных соединений для медицины РУДН.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.