Loading...

Авторы работы Николай Кузнецов (справа) и Михаил Лобачев (слева). Источник: Николай Кузнецов

Ученые предложили математический инструмент, позволяющий точно рассчитать условия стабильной работы систем фазовой автоподстройки частоты, используемых в устройствах связи и навигации. Такие системы синхронизируют параметры собственных сигналов устройства, например телефона, с поступающими на него сигналами, например от Wi-Fi-роутера. Предложенный метод расчетов позволяет избежать неточностей, которые допускали ранее используемые подходы, и предлагает инженерам простые формулы, удобные для применения в реальных проектах. Это позволит предотвратить ошибки в работе приборов спутниковой навигации и беспроводной связи. Результаты исследования, поддержанного грантом Российского научного фонда, опубликованы в журнале IEEE Access.

Системы фазовой автоподстройки частоты широко используются в спутниковой навигации и устройствах беспроводной связи. Они обеспечивают точную синхронизацию частоты и фазы сигнала, поступающего на устройство, и сигнала, генерируемого на самом приборе. Например, в случае Wi-Fi-соединения между роутером и телефоном сигнал, поступающий на телефон, может несколько отличаться от опорного сигнала — частот, генерируемых телефоном, — из-за помех или нестабильности передатчика (роутера). Система фазовой автоподстройки частоты сравнивает характеристики пришедшего сигнала и подстраивает их под те, что характерны для устройства. Это позволяет без ошибок передавать информацию, даже если исходный сигнал немного «зашумлен».

Однако системы фазовой автоподстройки частоты стабильно работают только при соблюдении ряда условий. Например, существуют ограничения по так называемому диапазону удержания — разнице частот, при которой система все еще способна поддерживать синхронизацию. Если разница превышает допустимый диапазон, устройства синхронизировать не получится. Другой важный параметр — диапазон захвата, то есть диапазон частот, в пределах которого гарантируется синхронизация при любых начальных условиях. При этом точно определить диапазон захвата сложно, поскольку для его расчета нужно решать системы нелинейных уравнений, в которых учитывается большое количество различных переменных. Ранее инженеры использовали приближенные методы, которые могли приводить к ошибкам, а потому не всегда обеспечивали стабильную работу системы.

Исследователи из Санкт-Петербургского государственного университета математически проанализировали работу одной из наиболее распространенных систем фазовой автоподстройки частоты и нашли относительно простой способ точно рассчитывать для нее диапазон захвата. Для этого ученые использовали математический метод замены переменных, который позволяет привести применяемые в других подходах сложные уравнения к более простому виду. Кроме того, исследователи с помощью графиков отобразили, как во времени меняется состояние системы фазовой автоподстройки частоты при передаче и приеме сигналов с разными параметрами (частотами и фазами).

Выведенные формулы позволили исправить неточности ранее предложенных подходов, в частности игнорирование скрытых колебаний, которые могут привести к потере синхронизации. Компьютерное моделирование подтвердило, что расчеты точно описывают реальное поведение системы автоподстройки частоты, благодаря чему их можно использовать на практике.

«Мы предложили комплексный подход, сочетающий качественный анализ системы и теорию скрытых колебаний, создание и развитие которой в этом году было отмечено Государственной премией Российской Федерации в области науки и технологий. Этот подход позволил получить точную формулу для диапазона захвата и избежать ситуации, когда устройство неожиданно теряет синхронизацию, что может оказаться критичным в случае систем, используемых в навигации и энергетике. В дальнейшем мы планируем развивать методы теории скрытых колебаний для анализа более сложных систем фазовой автоподстройки частоты и сотрудничать с инженерами для создания опытных образцов таких систем на основе предлагаемых методов анализа и синтеза. Актуальность этих работ связана с программой импортозамещения в российской электронике и широким спектром инженерных приложений», — рассказал участник проекта, поддержанного грантом РНФ, Николай Кузнецов, доктор физико-математических наук, член-корреспондент РАН, профессор, заведующий кафедрой прикладной кибернетики СПбГУ, заведующий лабораторией информационно-управляющих систем ИПМаш РАН.


Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.