Loading...
Разработку использовали на Kaggle — платформе международных соревнований по анализу данных и машинному обучению от Google. В частности, новую архитектуру применяли для предсказания выживаемости пациентов после трансплантации костного мозга. За решение этой и других задач с помощью TabM призёры и победители Kaggle получили в совокупности 60 тысяч долларов.
TabM (от англ. Tabular DL model that makes Multiple predictions) — это эффективная реализация так называемого ансамбля моделей, когда каждая модель проводит свой анализ, после чего прогноз усредняется. Архитектура TabM позволяет добиться оптимального соотношения точности прогноза и необходимых вычислительных мощностей.
По результатам тестирования на 46 наборах данных, TabM превзошла другие решения не только по занимаемому в среднем месту (1,7 у TabM против 2,9 у ближайшего конкурента), но и по стабильности работы, что важно для практического применения. Благодаря способности объединять усилия нескольких подмоделей и эффективному использованию вычислительных ресурсов, TabM успешно конкурирует с классическими моделями градиентного бустинга — CatBoost, XGBoost, LightGBM, — которые долгое время считались лучшим решением для табличных данных.
Подписывайтесь на InScience.News в социальных сетях: ВКонтакте, Telegram, Одноклассники.